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19-Tone Theory
and Applications

Microtonal music is one of those subjects
that has always been around, but few people
have ever had the will to investigate
it thoroughly. The main reason why more
people have not dealt with microtonal music
is that there are almost no instruments that
allow composers to experiment with it.

In spite of all this, the music of many cultures
even at the present time employs non-equal-
tempered scales, and even Western music
did until the eighteenth century,

when mathematicians worked out

the logarithmic basis of equal temperament.

In this article, the author explains how
he became interested in 19-tone equal
temperament and how he explored the possible
resources available in such a system.

This involves creating a chord grammar based
on similarity relationships, similar to what
he has used in his music written

in 12-tone equal temperament. Through these
considerations he discovered a particular

set of chords that have special properties

in terms of their interval content, number

of transpositions, and relationships

to other chords. Finally, the author explains
how he used these properties in the music

he composed in this temperament.
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19-ToHOBas Teopus
H eé IpuMeHeHue

MUKpOTOHOBas My3bIKa — 06J1aCTh, KOTOpas
CyIlleCcTBOBaJIa BCEr/ia, HO JIUIIb HEKOTOPhIEe
JITO[U IIPOSBJISIM JKeJlaHUe U3YUUTh e€ TIyosKe.
I'maBHAs IPUUYMHA 3TOTO B TOM,

YTO MHCTPYMEHTOB, II03BOJISIOIINX
KOMIIO3UTOpPaM 3KCIIEpUMEeHTUPOBATh

B 9TOM 00J1aCTH, IIPaKTUYeCKU HET.

TeM He MeHee B My3bIKe MHOTUX Pa3IMUHBIX
KyJIbTYP BILIOTH [0 HAIlIUX JHEM IIPUMEeHSI0TCA
HepaBHOCTYIIeHHEIe TeMIIepaliii, U Jake

B €BPOIIEMCKOM My3bIKe OHU OBITOBaIN

BILUIOTH 10 XVIII BeKa, [T0Ka MaTeMaTUKU

He BbIpaboTaIx JIOTapUGMHUUECKYI0 OCHOBY
PaBHOCTYIIEHHOM TeMIIepaliuu.

B maHHOM cTaThe aBTOP 00BSICHSET CBOU
HHTepecC K 19-TOHOBOM paBHOCTYIIEHHOMN
TeMIlepaliii U KaK OH U3YYMJI BCe BOSMOJKHEIEe
IOCTHDKEHUd, IIPUCYTCTBYIOIHE B 3TOMN
cUcTeMe. ITO BKJIKOUAEeT B cebsI co3aHUe
TapMOHHYECKOM aKKOPZ0BOM I'paMMaTUKH,
OCHOBAaHHOM Ha COOTHOIIIEHHUSX 10100,
CXO0KHX C TeMH, KOTOpbIe IIPUCYTCTBOBAIU
B €ro My3bIKe, COUMHEHHOM B 12-TOHOBOH
PaBHOCTYIIEHHOM TeMIlepaliuu. biarogaps
3TUM C000pa’keHUsIM OH 00HaPY KL
OIIpee/IEHHBIN Ha60p aKKOP/O0B, 06JI1a1a0IHX
0COOBIMU CBOMCTBAMHU C TOUKU 3peHUs
UX UHTEPBAJILHOIO COZleprKaHUs, KOJIMUecTBa
TPaHCIIO3UIIMI U COOTHOIIIEHUH C JPYTUMU
aKKOpZaMmu. B 3akyiroueHre aBTOP OOBSICHSET,
KaK OH UCII0JIb30BAaJI 3TH CBOMCTBA B MY3LIKe,
HAITMCAaHHOM UM B 3TOM TeMIlepaliuu.

KiaroueBnle ca0Ba:

PaBHOCTYIIEHHAasd TeMIlepaliusi,
3BYKOBBICOTHOCTb, SBYKOBLICOTHLIfI KJ1acc,
YHCJ/II0BOE IIpeacTaBJIeHe 3BYKOBBICOTHBIX
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of pitch structures, intervals, interval content,
multiplicative operations, complementary
operations, number of distinct forms

of a set, total chromatic, trichords, tetrachords,
pentachords, hexachords, septachords, arrays,
weighted pitch classes, array inclusions.

KJIaCCOB, 3BYKOBELICOTHBIE CTPYKTYPHI,
pefcTaBieHre 00bIYHOU GOpPMBI
3BYKOBBLICOTHEIX CTPYKTYP, UHTEPBAJIEI,
I/IHTepBaJIBHBIfI COCTaB, MHO>XHUTeJ/IbHbIE
omepariyy, B3auMOJeMCTBYIOIIHE OIlepaliiy,
KOJIMYEeCTBO PasJIMYHBIX GOPM 3BYKOPSZa,
TOTaJIbHBIA XPOMAaTU3M, TPUXOPAEI,
TeTpaxXxopZAbl, IIEHTAX0PEI, TeKCaX0pAbl,
CeIITaXxOpPAbl, 3BYKOPSIbI, HaTPY>KEeHHEIEe
3BYKOBBICOTHEI€ KJIACCHhI, BKJIIOYEHHA
3BYKOPSIZIOB.
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1. Historical Background
icrotonal music is one of those
Msubjects that has always been
around, but few people have ever
had the will to investigate it thoroughly.
I remember a story once told to me by
my colleague at Queens College, Joel
Mandelbaum, a microtonal composer
who wrote a dissertation on the subject in
the 1960s. In researching his dissertation,
he came across numerous references to
a certain book no one seemed to have.
He finally found a copy in the Library of
Congress. The book had never been read,
and he was the first person to tear the pages
apart (the book was a European publication
that came with the pages folded and uncut).
The main reason why more people
have not dealt with microtonal music is
that there are almost no instruments that
allow composers to experiment with it.
For one thing, the calculations necessary
to produce different divisions of the octave
are complicated. There are some microtonal
instruments, but almost none that can put
the span of a different number of notes
per octave under the fingers of one hand.
The Scalatron, a type of microtonal organ
designed many years ago by Motorola, has
a complicated system that looks more like
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a typewriter, with keys going up and down
at different angles. Playing it is more like
touch typing than keyboard performance.
Very few people have used or even seen this
instrument, and those who do must suffer
its weak collection of timbres, which are
more boring than a “soap opera” organ.
Ives’ quarter-tone music attempted to solve
this problem by using two pianos tuned a
quarter-tone apart, but this system is limited
to subdivisions of the 12-tone scale and
very difficult to use for improvisation. The
chromatic keyboard historically developed
for keyboard instruments is such a part of
our conceptualizing of both music itself
and Western notation that even modern
instruments like synthesizers almost
universally use it.

The only practical way to obtain a
microtonal instrument at the present
time is to tune a synthesizer which allows
microtonal tuning (there are only a few,
but recently more designers have seen the
need for it, although not for the reasons
outlined here). This works, but you have to
adjust your mind and fingers to the notion
that what looks and feels like an octave
doesn't sound like it any more. In fact, I can
imagine composing microtonal music for
these instruments that would have to be
written out in conventional notation so that
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ordinary keyboard players would be able
to play it, with the resulting improbable
situation that the notation played from
would not be the same as that heard, and if
the music were played on a conventionally
tuned instrument it would be a completely
different piece! (Would it still make sense?)

In spite of all this, the music of many
cultures even at the present time employs
non-equal- tempered scales, and even
Western music did until the eighteenth
century, when mathematicians worked out
the logarithmic basis of equal temperament. I
would argue that the music of at least a couple
of centuries before that time anticipated
equal temperament, and since much of
it was vocal, can probably be regarded
as based on 12-tone equal temperament.
What characterizes much of this music
to Western ears is that it sounds “out of
tune,” while not necessarily unpleasant.
The main reason why non-Western cultures
employ these scales is that they use musical
instruments that are made according to
traditional methods that usually predate the
knowledge of logarithms. Perhaps it is our
cultural superiority that leads us to imagine
that this music would “tend” toward equal
temperament if the inventors had had such
knowledge.

There are two standards according to
which all tuning systems have been judged.
Most people would only think of the first, the
overtone series. The second is the number
and size of the steps needed to fill in an
interval, such as an octave, although in more
practical terms smaller intervals such as a
fourth or fifth. Western music struggled with
these forces for centuries until the 12-tone
scale and Western notation emerged. The
evolution of triadic tonality went through
analogous processes of development. This
is a fascinating subject, and one to which
present listeners and thinkers are not
necessarily attuned, but it is not my subject
at this time.

Comparing tuning systems to the
overtone series has led us to judge them by
how accurately the intervals of the overtone
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series, particularly the lower intervals, sound
in that system. The 12-tone equal-tempered
scale has very good fourths and fifths
according to this method. The difference
between a pure fifth and an equal-tempered
fifth amounts to only 0.445 Hz at middle C.
In one sense, this means that the difference
between a pure and tempered fifth can be
measured in beats, and there will always
be beating when fifths are used because the
pure intervals will be present in the form
of overtones. According to this method of
evaluating tuning systems, microtonalists
are particularly fond of 12-tone, 19-tone,
31-tone and 51-tone temperaments, because
these divisions of the octave produce very
good intervals of various kinds: 19-tone
temperament produces very excellent
thirds and sixths (both major and minor),
while 31-tone temperament very good
fourths and fifths (even better than 12-tone
equal temperament). 51-tone temperament
produces very good thirds, fourths, fifths
and sixths.

This type of reasoning begs the question
of why the overtone series should be used
as the standard of comparison. That is
indeed an important question, and my
background in electronic music gives me a
different perspective on this problem than
most people who have only read about the
overtone series and not used it on a daily
basis. Most sounds contain overtones, and
their strength and variations in amplitude
over the course of the sound produce what
we perceive as timbre. Other tones in the
scale that are very close to overtones tend
to blend in with the lower fundamentals, in
extreme cases producing a situation where
the higher tone disappears and serves only
to modify the timbre of the lower one.
Unlike all those psychology books that mis-
define consonance as “pleasing,” the result
is boring. This is a fundamental criticism
that I feel about music in so-called just
intonation, such as that of Harry Partch
(whose music is quite interesting for other
reasons). It is “so-called” because the music
rarely achieves that goal. The ultimate result
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of a just-tuned major triad would meld
into a single tone. Consonance is boring.
Dissonances, even minute differences in
intonation, but more importantly deviations
in tonal characteristics while a sound plays,
are interesting.

The other reason behind the
standardization of the 12-tone equally
tempered scale is the number of steps
needed to fill in an interval. Our ears have
been accustomed to the conventional
scales to such an extent that it is probably
impossible for us to understand the situation
faced by the ancients who had to think about
how to fill in a space without the benefit of
our knowledge. This is probably a situation
that would be greatly helped by instruments
that would allow us to improvise. There is no
doubt that the squeezing of more and more
notes into the space of an octave creates
greater complexity and the “messiness” of
more tones to worry about.

I am not arguing that music which is live
performed is, by any accurate measurement
of frequencies, played in tune. Pianos are
tuned to a rather complex type of meantone
temperament. Woodwind instruments have
holes at carefully measured distances to
produce the supposedly correct pitch, but
changes in breath pressure and mouthpiece
placement greatly affect intonation. Brass
players literally play overtones of lower
notes. String players learn to place their
fingers in carefully calculated positions. All
players constantly adjust their intonation,
supposedly on the basis of what they hear.
Accurate measurements have rarely been
made of what happens under stressful
battle conditions (I hope you can forgive
the military analogy), and a widespread
mythology exists on the part of both
musicians and psychologists about what
actually happens.

Of course, the judging of any temperament
requires carefully tuned instruments so that
we can be sure that we are actually hearing
what the result of our calculations says we are
listening to. It has always seemed to me that
computer music is the only natural medium
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for microtonal experimentation, and that is
what I have used in realizing my own works
described below. The only disadvantage in
the present context is that computer music
makes improvisation practically impossible,
since every aspect of what you produce has
to be carefully imagined and calculated in
advance.

I have been experimenting with the
possibilities of 19-tone equal temperament,
and in the following discussion I will explain
some of the reasons why I have chosen to
do what I have done. If you have ever had
the feeling that you have only scratched
the surface of a subject, these experiments
have left me with that feeling raised to a
power. The possibilities are enormous, and
we are only beginning to understand how
to think about the ways of dealing with
these materials. Many of the basic ways of
thinking about musical materials that we
have learned from our previous experiences
do not apply here; on the other hand, if
you're not careful, you can write music that
simply sounds like out-of-tune tonality.

2. Basic Concepts

Many of the basic concepts I explain
here are similar to those learned in any
basic course about atonal music theory,
with some differences. As in 12-tone
equal temperament, in 19-tone equal
temperament we start with the concepts
of pitch and pitch class; only in this case
there are 19 pitch classes and 139 pitches
in the seven and one-third octave span of
the piano keyboard. We will also define a
pitch class set as a collection of pitch classes,
and while we might want to look at large
collections of notes, we will spend most of
our time dealing with small ones. (Imagine
replacing the idea of the 12-note set,
produced by leaning on the keyboard, with
that of a 19-note set!) It is also necessary
to define transposition as a basic similarity
relationship where we can hear the same
pitch class set moved up or down in the
pitch space.
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The pitch classes of the 19-tone scale will
be designated by the integers 0 to 19, with
0 representing the note we know as C. This
makes it easy to calculate the differences in
19-tone “semitones” between pitches. For
those who prefer a more familiar form of
notation, I propose a system of conventional
names for the notes below.

The next higher order concept is that
of interval, or 2-note pitch set. In 19-tone
temperament there are eighteen intervals.
When we extend this to interval class
(whereby inversions are counted as part of
the same structure, since you are considering
the shortest distance between the pitches
regardless of octave placement), there are
nine sets. The next higher order concept is
that of pitch structure, which includes all PC
sets related by transposition. Since 19 is a
prime number and there are no intervals
that evenly divide the octave, there are
19 transpositions of each pitch structure.
According to this line of reasoning, the idea
of interval class discussed above is simply
that of “pitch structure of size 2”. Larger
pitch structures can also be examined for
their interval content by counting their
pitch class subsets of two elements, and
when these are tabulated the result is known
as the interval content of a pitch structure
(sometimes called a “vector”).

These concepts are simple enough, but
before we go on, I must digress and note my
differences with other theorists who have
made the interval content of a PC set the
basic concept rather than the pitch structure,
as I have done. In 12-tone temperament,
because of the fact that 12 is divisible by 2,
3, 4 and 6, a situation is created whereby
some PC sets have the same numbers of
intervals of the same type even though they
are unrelated by transposition or any other
simple relationship. Since there was no
obvious relationship, these structures were
dubbed to be “Z” related. This is a unique and
interesting condition, and it ought to rule
against the idea that the interval content be
made the basic structure. It is also doubtful
that any atonal composers made use of the
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“Z” relationship since it was not discovered
until after their music was written, while it is
obvious that they used transposition. Many
theorists have the idea that things would be
simpler if they could reduce the number of
basic elements in some fashion, only in this
case it only makes things more confusing.
In any case, there are far fewer structures
to worry about in 12-tone temperament; we
will have to do some neat tricks to reduce the
number of elements in 19-tone temperament,
and we will do so below.

While I am on the subject of my gripes
about other theorists, let me give you another,
more serious one: some theorists make a
table of pitch class sets, and when a set is
encountered in a piece under consideration
it is simply designated something like “set
3-12.” I think it makes far more sense to use
the pitch structure designation of a structure
and transposition, such as “0 3 4 (3)” to
indicate individual PC sets than references
to tables. (“0 3 4” is the pitch structure and
the transposition is shown in parentheses
or as a subscript.) This is exactly like calling
something a “B-flat major triad,” which gives
the precise structure and transposition, and
allows for all structures, even those that
don't have common names.

The next basic concept is that of a normal
form representation for pitch structures.
Normal form is the choice of one registral
ordering of the set as its proper notation,
such as choosing the root position of a major
triad over the first or second inversions.
Intervals are produced by subtracting the
other PCs from a given one modulo 19. The
rules for normal form are as follows: First,
choose the form that results in the smallest
overall intervallic span. For example, [0 6 12]
could be represented as [06 12], [0 7 13], or [0
6 13] (in these examples brackets are placed
around the sets for easy identification). If the
first step does not produce a unique result,
chose the form with the smallest second,
third, ... interval. (In addition to [0 3 9 13], the
forms of this set include [0 6 10 16], [0 4 10
13] and [0 6 9 15]. The second rule resolves [0
39 13] as the form of notation.) Fortunately,
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in 19-tone temperament there are no sets
that divide the octave evenly, such as the
diminished seventh chord.

3. Multiplicative Operations

The concepts outlined above would be
enough to get started on a meaningfully
informed process of musical composition, at
least where we would be aware of the most
basic aspects of pitch vocabulary. I have gone
a further distance, however, because of my
desire to employ some of the same methods
that I use in my non-microtonal music.
Probably the next step for any composer
would be to define some basic similarity
relationships or transformations that could
be applied to pitch class sets. In this context
the first idea that usually pops out is that of
inversion. In my view, inversion of but one
aspect of what have been called multiplicative
operations. These operations are produced
by multiplying the elements in the pitch
structure by a constant, and have the effect
of expanding or contracting the intervals
in the set. Inversion is often described as
multiplying by -1, which is the same as the
number of pitches minus 1, and turns the
interval pattern “upside down”. (I should
clarify that I am employing multiplicative
operations as structural operations and
am not implying any particular manner in
which the sets would be used in a musical
context, although of course the judicious
choice of orderings and registrations can
clarify the source of a transformation used.)

In music based on the 12-tone scale,
because 12 can be divided equally by 2, 3,
4, and 6, the only multiplicative operations
that are usually considered are 1, 5, 7, and
11, corresponding to the cycles of ascending
and descending minor seconds and perfect
fourths. In 19-tone music there are 18
multiplicative operations, and all of them can
produce different structures! (It is helpful
to remember that multiplicative operations
other than 1, 5, 7, and 11 can even be used
in 12-tone music, and may in fact have been
employed by some composers before things
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were investigated in this thorough a manner.
[0 1 2 3], for example, can be mapped into [0
2 4 6] by M2 and [0 3 6 9] by M3. M4 and
M6 would produce duplications of PCs at the
octave and greater intervals, thus producing
complications that the composers would
have to provide some solution for.)

There are certain basic similarities
between all sets that are related by
multiplicative operations, designated as
“M1, M2, ..., M18,” and therefore I have
devised a system of type classifications and
groupings of pitch structures into families
based on their behavior under multiplicative
operations. This system greatly reduces the
complexity caused by the huge number of
distinct forms, and makes the territory seem
much more manageable. Before getting
to that material, however, it is helpful to
explain a few more concepts.

Complementary operations are operations
that are “inversional” with respect to one
another, or in simpler terms, operations
where the sum of the numbers after the “M”
is 19. M1 and M18 are complementary, as are
M2 and M17, ..., M9 and M10. Pitch structures
thatare related by complementary operations
always have the same interval content, and
only those sets have that particular interval
content.

The number of distinct forms of a set refers
to the number of different pitch structures
that are produced under the 18 multiplicative
operations. While all 19-tone pitch structures
have 19 distinct transpositions, and most
pitch structures have 18 distinct forms,
there are two other possibilities that exist:
some sets are self-inverting and have only
9 distinct forms, and some highly unusual
sets have only 6 distinct forms, replicating
themselves under M7 and M11.

The total chromatic is, as in 12-tone
theory, a representation of all the possible
PCs, 19 in this case.

In 12-tone equally tempered music, there
are the same number of intervals as there
are decachords, trichords as nonachords,
tetrachords as octachords, and pentachords
as septachords, with hexachords a special
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case. In 19-tone music, there are the same
number of intervals as there are pitch
structures of size 17 (I don't think there is
a word for that), pitch structures of size 3
as 16, etc. This is mentioned only so that I
can describe the notation for sets of a large
number of elements (more than half the PCs
in the system) in terms of the pitch classes
that they exclude. (This is also useful for 12-
tone equal tempered music.) The term “Excl.,”
when preceding the designation of a PC set,
such as “Excl. 01 4 6 (9),” refers to the set of
PCs excluding the designated set, in this case
a set of 15 PCs. Thus, in the following table
only sets up to size 9 need be considered.

The following table 1 shows the number of
pitch structures and the number of families
of pitch structures related by multiplicative
operations that exist for each 19-tone pitch
structure, and for comparison, the number
of 12-tone structures of the same sizes. (I
have not calculated the sets larger than
hexachords.)

Table 1.
Size 12-tone 19-tone 19-t01.u?
PSs PSs PS Families
2 6 9 9
3 19 51 4
4 43 204 14
5 66 612 36
6 80 1,428 86
7 66 2,652 154
8 43 3,978 228
9 19 4,862 280

I originally designated families by letter
names, in order to use Roman numerals for
type classifications and Arabic numbers for
PCs and PSs. This produces family names of
“A” through “N” for tetrachords, “A” through
“IJ” for pentachords, and “A” through “FFFF”
for hexachords. This gets to be cumbersome
and is probably impractical, but I do not
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intend to make a thorough investigation of
bigger chords.

Type classifications are based on an
investigation of the behavior of the sets under
the multiplicative operations. While entirely
empirical, these are useful in order to know
what possibilities may exist with a particular
PC set that you may choose to employ. The
principles used to form these classifications
are the number of distinct forms that the set
produces under multiplicative operations
and the number of intervals that the sets
contain.

Type I: the set has only six
distinct forms.
TypeII:  the set has nine distinct forms,

complementary operations
producing the same form.

All higher-numbered types contain 18
distinct forms. Type classifications are based
on the number of interval classes that are
present and absent in the forms.

Type III:  only 3 interval classes
are present; 6 are absent.

TypeIV: 41ICs are present, 5 are absent.
Type V: 5 1cs are present, 4 are absent.
Type VI: 6 ICs are present, 3 are absent.
Type VII: 7 ICs are present, 2 are absent.
Type VIII: 8 ICs are present, 1 is absent.
Type IX: all interval classes are present.

The usefulness and interest of the sets
increases with the type. Not all PSs of a given
size contain all types. Trichords contain only
types L, II, and III. Tetrachords contain types
I through VI. Pentachords do not contain
families of types I or III.

4. 19-tone Intervals
The first thing that it would be useful

to do would be to compare the 18 19-tone
intervals to both the overtone series and
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Table 2.

Step 19-tone Ratio 12-tone Ratio

Interval Just Interval

0 1.0000 1.0000 Unison 1.0

1 1.0372

2 1.0757

3 1.1157

4 1.1571

5 1.2001 1.1892 Minor Third 1.2

6 1.2447 1.2599 Major Third 1.25
7 1.2910

8 1.3389 1.3349 Perfect Fourth 1.3333
9 1.3887

10 1.4403

11 1.4938 1.4983 Perfect Fifth 1.5
12 1.5493

13 1.6069 1.5874 Minor Sixth 1.6
14 1.6666 1.6818 Major Sixth 1.6667
15 1.7285

16 1.7927

17 1.8593

18 1.9284

to 12-tone equal temperament. Since the Table 3.

semitone and whole tone are really different
in 19-tone temperament (there are about 3
19-tone steps for 2 12-tone steps), I don’t
even bother comparing those (see Table 2).

It can be seen that the intervals listed —
major and minor thirds and sixths, and
perfect fourths and fifths, have very precise
intervals in 19-tone temperament, but there
are no corresponding half and whole steps of
the 12-tone tempered scale.

Itis easy to use the integers 0 through 18 as
the names of the notes, and that is what I will
do in this document for the most part. I have
also used the following system of note names
as a mapping of the 19-tone scale onto the
five-line staff, using the customary symbols
of flats and sharps (see Table 3).
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Number Name

Number Name

0 C 0 C

1 C# 18 B# or Cb
2 Db 17 B

3 D 16 Bb

4 D# 15 A#

5 Eb 14 A

6 E 13 Ab

7 E#orFb 12 G#

8 F 11 G

9 F# 10 Gb
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The right column reads backwards in order
to place complementary notes (with respect
to C) opposite each other. It is difficult to
accept the notion that the difference between
C# and Db is the same as that between C and
C#, or that our notational system includes
Db, D, and D# all as different notes. We
could adopt a system using double sharps
and flats, or even sesqui-sharps and -flats as
some microtonalists have done. Nevertheless,
music transcribed in this notation is easier to
follow, and the notes give a pretty accurate
picture of where the sounds actually occur.
(Of course, notation given to performers on
microtonally-tuned synthesizer keyboards
such as I described before has to use the
note designations for the keys in equal
temperament, for that is the only system that
the performers know how to play.)

There are some important properties of
this notational system. First, all of the intervals
that are very close to their 12-tone and just
equivalents are transcribed properly: C-Eb is
a minor third, C- E a major third, C-F a perfect
fourth, C-G a perfect fifth, C-Ab a minor sixth,
and C-A a major sixth. Also, C#-E and Db-F
are a minor third and major third (intervals
of 5 and 6 steps), respectively. Many of the
intervals are represented properly, but of
course, several are not. Db- E#, for example,
isaminor third, and in conventional notation
that would represent a doubly augmented
second. Allowing the variants of E#-Fb and
B#-Cb allow some of these problems to
be avoided, but not all. In order to have a
correctly notated minor third above Gb, we
would need a Bbb, and I have been unwilling

to go that far. In this notational system, all
the perfect fourths and fifths can be right; it
is the thirds and sixths that sometimes look
weird.

Can conventional acoustic instruments
play in 19-tone temperament? Actually,
they can, but they can’t play all the notes of
the scale without learning how to hear the
intervals much more accurately. However,
because of the very close intonation of major
and minor thirds and sixths and perfect
fourths and fifths, the notes C, Eb, E, F, G,
Ab and A could be played with acceptable
differences in intonation. While the good
intervals would work properly beginning
from any reference tone on an instrument
that could play in adjustable intonation, like
a violin or trombone, they would first need
to hear areference tone in order to make the
proper adjustment. Instruments with fixed
pitches, like woodwinds, piano or pitched
percussion, could only play the seven notes
listed above, but these would be all right.

5. Pitch Structure Data

These concepts can only be clarified
by looking at some of the data. All will be
listed by types, groups, and multiplicative
operations.

A. Trichords

The following table 4 list the four families
of 19-tone trichords. Group A, type II, has
only nine distinct forms, and group D, type
L, only six.

Table 4.
Group A Group D
M1, M18 012 M1, M7, M11 018
M2, M17 024 M2, M3, M14 035
M3, M16 036 M4, M6, M9 0610
M4, M15 048 M5, M16, M17 025
M5, M14 05 10 diminished triad M8, M12, M18 078
M6, M13 0 6 12 augmented triad M10, M13, M15 0410
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Table 4 (continued).
Group A Group D
M7, M12 0512
M8, M11 0311
M9, M10 0110
Group B Group C
M1 013 014
M2 026 028
M3 039 0710
M4 0711 037
M5 049 015
M6 017 056
M7 027 079
M8 058 0511 minor triad
M9 089 0810
M10 019 0210
M11 038 0611 major triad
M12 057 029
M13 067 016
M14 059 045
M15 0411 047
M16 069 0310
M17 046 068
M18 023 034

B. Tetrachords

There are 204 19-tone tetrachords, which
can be grouped into 14 families (which I
label “A” through “N”). The following (see
Table 5) is a summary of the possibilities.

The intervals shown are merely meant to
suggest the number of intervals of different
types that occur, not the precise locations.
In group A, for example (the 0 1 2 3 group),
there are always three intervals of one type,
two of another and one of a third.

You may be able now to see where I
am going with this. The more interesting

90

structures are the ones with both 18 distinct
transpositions and the greatest interval
count. In this case, they are groups H, K and
N (see Table 6).

C. Pentachords

There are 612 19-tone pentachords,
which can be sorted into 36 groups labeled
“A” through “JJ” (assuming that we label the
ones after “Z” as “AA, BB,” etc.). Table 7 —
is a summary of what they are.
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Table 5.
Type No. Transpositions Intervals Groups
L. 6 [111111000] I
II. 9 [321000000] A
[221100000] EJ,L
IV. 18 [221100000] B
V. 18 [211110000] C,D,F,G,M
VI. 18 [111111000] H,K,N
Table 6.
Group H Group K Group N
M1 0137 0146 0237
M2 05711 02812 05911
M3 0239 06710 0269
M4 04912 0378 01411
M5 0149 01511 0569
M6 0157 0278 06711
M7 02711 0479 03810
M8 0169 02511 0238
M9 0689 0789 0179
M10 0139 02310 0289
M11 0389 06911 0568
M12 04911 0259 02710
M13 0267 0168 04511
M14 0589 061011 0349
M15 03812 0158 071011
M16 0679 03410 0379
M17 04611 041012 02611
M18 0467 0256 0457
Table 7.
Type No. Transpositions Intervals Groups
IL. 9 [111111000] A
[322210000] EE
[222211000] T, AA
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Table 7 (continued).

Type No. Transpositions Intervals Groups
V. 18 [332110000] B
18 [322210000] F
VL 18 [322111000] C,G K 0,Q,HH
18 [222211000] FF
VII. 18 [321111100] D,E, U
[222111100] HLLRV,WY,GGIL]JJ
VIII. 18 [221111110] ,M,N, S, X, Z,BB, CC, DD
IX. 18 [211111111] P
With pentachords, we see that there is Group P (16)
just one group that has all intervals. It is
listed below: M17 024511
M18 03789

Table 8.

Group P (16)
M1 01269
M2 067911
M3 01479
M4 026710
M5 0571011
M6 045713
M7 0591112
M8 027811
M9 023812
M10 0491012
M11 034911
M12 013712
M13 023713
M14 014611
M15 034810
M16 02589
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These sets figure prominently in the 19-
tone music I have written.

D. Hexachords

With hexachords, we start dealing with
really large amounts of data, which those
who are accustomed to using 12-tone
chords are unprepared. There are 80 12-
tone hexachords, but there are 1,428 19-
tone hexachords, which may conveniently
be classified into 86 groups. I could designate
these “A” through “HHHH”, but I have instead
just numbered them. With this huge amount
of data, it is quite helpful that we can reduce
the forms to just 86 groups to work with.

The following table 9 gives a summary of
these forms.

Following the patterns set above, the most
interesting hexachords are the ones that
contain all intervals with the most balanced
distribution, and these would be the last four
in the list above (see Table 10).
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Table 9.
Type No. Transpositions Intervals Groups
L 6 [222222111] 33
I1. 9 [543210000] 1
[433221000] 20,72
[432221100] 36,52, 79, 85
[322222110] 80
[222222111] 81
VL. 18 [443211000] 2
[433221000] 6
VIL 18 [433211100] 3
[433211100] 7,75
[422222100] 11
[333221100] 21,50,73
[332222100] 25
[333311100] 49
VIIL 18 [432211110] 4,26
[422221110] 16,19
[333211110] 8, 22, 54,57
[332221110] 10, 12, 23, 44, 51, 53, 64, 74, 76, 82, 83
[322222110] 15, 24, 29, 37, 39, 47, 58, 59, 60, 66, 69, 77, 86
[222222210] 35
IX. 18 [432111111] 5
[333111111] 84
[332211111] 9,13,17, 38, 48, 68
14, 18, 27, 28, 30, 31, 34, 40, 41, 43, 45, 46, 55,
322221111} 62, 63, 65, 67, 70, 71, 78
[222222111] 32,42, 56,61
Table 10.
Group 32 (FF) Group 42 (PP) Group 56 (DDD) Group 61 (IIT)
M1 0124711 0125810 0134810 013589
M2 0578913 0345713 0345911 0235913
M3 02791013 048111314 03591112 04791213
M4 03791112 0124813 0147911 0157811
M5 0134813 02561012 0378912 04691012
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Table 10 (continued).

Group 32 (FF) Group 42 (PP) Group 56 (DDD) Group 61 (III)
M6 0456912 036101112 0146711 045101213
M7 02471213 06791112 01381014 0235910
M8 04581011 03571011 0457813 04691112
M9 0126811 02781112 0167911 049111213
M10 03591011 01451012 02451011 0124913
M11 0136711 0146811 0568913 0136812
M12 01691113 0135612 02381214 0157810
M13 0367812 0126912 04571011 0138913
M14 059101213 02671012 0345912 0125711
M15 0135912 059111213 02471011 03461011
M16 03461113 01361014 0137912 0146913
M17 0456813 0234713 0267811 048101113
M18 04791011 0258910 0267910 014689

E. Septachords

There are 2652 septachords, not quite

As before, the interesting forms are the
ones with all intervals distributed in the
most even manner. Table 12 shows these

double the number of hexachords, and these  groups.
break down into 154 groups (see Table 11).
Table 11.
Type No. Transpositions Intervals Groups
L [333222222] 130, 135
II. [654321000] 1
[544322100] 136
[543222210] 151
[444322110] 101
[443322210] 62, 152
[433322220] 154
[444222111] 149
[433222221] 92
VIII. various 21 groups
IX. all with [5] 6 groups
all with [4] numerous
all with [3s, 2s, 1s] 33 groups
[333222222] 89, 118, 149
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Table 12.

Group 89 Group 118 Group 147
M1 01257811 013571011 02348911
M2 0469111213 012361014 02367911
M3 015781011 0256101213 01347914
M4 01468913 01246912 0267101113
M5 01358913 034571213 024561114
M6 0469101112 014571012 0457111314
M7 0479111213 0469121314 045671114
M8 0159111214 01356913 013471214
M9 0348101113 04678914 02348912
M10 023591013 01235914 034891012
M11 023591314 0478101213 02710111314
M12 01246913 012581014 037891014
M13 01236812 025781112 013791014
M14 0458101213 016891013 012461114
M15 045791213 0368101112 023671113
M16 013461011 013781113 02568914
M17 01247913 04811121314 02458911
M18 034691011 014681011 02378911

F. Larger Chords

While I haveinvestigated the larger chords,
through size 9 (and ones larger than those
can be handled through their complements),
I haven’t used them extensively, and the
above discussions go far enough ahead for
most purposes.

6. Arrays

Arrays are structures pitch class sets
where each PC is a member of at least
two dimensions at the same time. Two-
dimensional arrays are written out as
boxes in which the horizontal dimension
represents “voices” and the vertical
dimension “chords.” The designation of a
two-dimensional array gives the number
of notes in the voices followed by “x” and
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the number of notes in the chords (.e.,
a 5x4 array). Arrays of a higher number
of dimensions include sets of arrays of
a smaller number of dimensions. In my
system, I only consider higher numbers of
sets of the same sizes: three-dimensional
arrays consist of two-dimensional arrays of
the same dimensions (i.e., four 5 x4 arrays),
and four-dimensional arrays sets of three-
dimensional arrays (i.e. four 4x5 x4 arrays;
in practice things rarely get this heavy).

Since arrays involve a lot of duplication,
it is clear that the same PC may occur
more than once. When it does, it is called a
weighted PC. Using arrays involves noting
the PC content included in the chords and
voices, weighted PCs, and the structure of
the chords and voices. Since 5 x4 is 20, this
is the smallest size array that can state the
total chromatic.
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Arrays can be written out either in
musical notation or numerically, using the
system described above (C=0, C#=1,...,
B#=18). Arrays used in compositions are
usually structured very carefully to reflect
a given set of concerns. I am interested in
arrays where all the chords and voices are
related by multiplicative operations, where
all intervals are present, and where the total
chromatic is present. The following is an
example:

M1 04175 026717 M13
1131614 0137(13) M1
211187 03812(18) M15
61598 0239(6) M3

Wt.=9 910123 0679 (3) M16

Chords: 01269 (0) [M1,06 79 11 (4)
[M2],03789(9) [M18],02 4511 (3) [M17]

“Wt=9” indicates that 9 is the only
weighted PC. The total chromatic is
represented. Both the chords and voices are
related under multiplicative operations, and
the chords include two pairs of structures
represented by complementary operations:
M1 and M18 plus M2 and M17. The voices
include one pair of complementary
operations, M3 and M16. Arrays with this
degree of structure, where both chords and
voices are related in this manner, are very
rare. I had to discover them by running a
computer program that went through all the
possible permutations of the chords. Here
are some others:

M3 0121315 0137@12) M1
31104 0239(1) M3
614162 02711 (14 M7
18785 0689(18) M9

Wt.=8 811179 0139(8) M10

Chords: 01479 (18) [M3],04 5713 (7)
[M6],02589(8)[M16],02 3713 (2) [M13]

M4 016111 0589(11) M14
414718 04912014 M4
86159 0239(6) M3
531713 0491113 M1i2
1721012 02711010 M7

Chords: 026710 (17) [M4],027 811 (14)
[M8],034810(7) [M15],034911 (9) [M11]

M5 0196 0169(0) M8
58413 014914 M5
10171416 0467 (10) M18
111872 03812(18) M15

Wt.=7 712315 04912 (3) M4

Chords: 0571011 (0) [M5],0491012(8)
[M10],014611(3) [M14],023812(13) [M9]

M7 09516 03812(16) M15
715173 02711(15) M7
1411211 0139(11) M10
410618 05711(18) M2

Wt.=6 61382 04611 (2) M17

Chords: 0591112 (14) [M7],014611(9)
[M14],01 3712 (5) [M12],05 7 10 11 (11)
[M5]

This is a very special set of arrays, all
based on the group P pentachords and
group H tetrachords. They all have the
same relationships as the first array shown
above, and in fact they are all multiplicative
forms of one another, which is shown by
the “M1, M3, M4, M5 and M7” indicated in
the upper left.

This sequence of five arrays states
all multiplicative forms of the 0 1 2 6 9
pentachord, with M14 appearing twice, just
as each array states all 19 pitch classes, with
one PC appearing twice. Not all forms of the
voice 01 3 7 tetrachords are stated, however;
M6 and M11 are missing, M1, M4, M7 and M10
appear twice, and M3 appears three times.
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These arrays appear verbatim in my
composition Meditation. The opening of the
piece, based on tetrachords, unfolds all 18
intervals of the 19-tone scale in a manner
that shows each of the steps, but in such a
way that no single interval ever dominates.
In fact, the use of as many intervals as
possible without duplicating any one of
them, particularly the jarring minor seconds,
makes a fluid and interesting context.

7. Array Inclusions

As with arrays based on 12-tone
temperament, it is possible to have smaller
arrays nested inside larger ones. For example,
the following trichordal array is included
within the array M1 listed above (repeated
for convenience):

Hexachords:

M1 04175 026717 M13
1131614 0137(13) M1
211187 03812(18) M15
61598 0239(6) M3
910123 0679 (3) M16
1216 6 2 04913(12) [groupl]

Chords: 0126912 (0) [M13],06 79 11
12 (10) [M7],03 6101112 (6) [M6],01356
12 (2) [M12]

Wts: 0471014 (2)

Here, all of the chords are from group
42 (PP). The added voice tetrachord is,
unfortunately, not from the same group as

M1 04175 0267(17) M13  the other voice tetrachords.
1131614 0137(13) M1 Septachords:
211187 03812(18) M15 M1 04175 0267(@17) M13
61598 0239(6) M3 1131614 0137(13) M1
Wt.=9 910123 0679 (3) M16 211187 03812(18) Mi15
61598 0239(6) M3
Chords: 01269(0) [M1],06 79 11 (4)
[M2],03789(9) [M18],02 4511 (3) [M17] 910123  0679(3) M16
Trichords: 177111  03913(17) [group L]
M1 04175 0267017 761112 0156 (6) [group J]
211187 03812(18) Chords: 02348911 [M1],02367911
(4) [M2],02378911(9) [M18],024589
61598 0239 (6)

Chords: 02 6 (0) [M2],07 11 (4) [M4],08
9(9) [M9], 02 3 (5) [M18]

The chords are all from the trichord group
B, and the array is a complete subset of the
pentachordal array, with the same voice
tetrachords.

There are no tetrachordal subsets all the
chords of the array that are in the same
groups. There are larger arrays, however:
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11 (3) [M17]
Wts: 0278101314 (17)

All of the chords are from group 147. Of
particular interest with the septachordal
array is the fact that all the voices have the
same multiplicative relationships that they
do in the pentachordal array.

There are similarly multiplicative forms
of these arrays that yield 18 distinct forms
with the same relationships between the
chords and voices.
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8. Conclusions

These considerations show that, while
19-tone harmony is inherently much more
complicated than triadic tonality or even
the complexities of atonality and serialism,
it can still be understood by the same kinds
of principles that apply to other music.
The amount of data in 19-tone harmony
is staggering, and it cannot be dealt with
successfully by intuitive methods or
experimentation, especially since we do
not have musical instruments that allow
experimentation with the sounds.

I have tried to employ methods that are
similar to what I have used in my other
music, namely by bringing together groups of
harmonies related by pitch transformations,
combining them into larger structures like
arrays, and incorporating smaller arrays
into larger ones so that there is a coherent
relationship between the subcollections,
with common-tone properties providing
the basic for continuity and succession.
Other composers may approach harmony
differently and come up with similarly
interesting and coherent music.

I have also integrated a preference
towards avoiding the intervals that are
unusually clashing, like the “minor seconds”
01 and 02, putting them into contexts where
atleast they are used with octave separations
so that they don’t sound so jarring. I also have
a preference for maximizing diversity, in
such a way that structures that include fewer
intervals are avoided in favor of passages
that contain all interval classes, if possible.

I have written two compositions
employing 19-tone equal temperament
that are recorded: Meditation, my first
composition, written in 1993 and released
on Temperamental Music and Created
Sounds, and 19-tone Clusters, written in 2010
along with its 12-tone tempered companion,
Clusters, recorded on the album with the
same name. Both works have since been
uploaded to YouTube.

Meditation, as the title implies, is a slow
and contemplative piece, although it has
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a palindromic shape with accelerations
in each section until the mid-point and
decelerations afterwards. It begins with a
single tone followed by a long melody that
unfolds all the intervals of 19-tone equal
temperament. The melody has significant
beating at times; there is no vibrato used
in the entire piece. Beating is a significant
property of all equal temperaments; the only
way to avoid it is to use just or pure intervals.
As the work proceeds, chords of various
sizes occur throughout, again employing all
possible interval classes. The work ends on a
nearly pure major triad, the last tone fading
away much as the work began.

19-tone Clusters, the overtones are all
clusters of 5-note chords duplicated through
three to four octaves above the note. In
other words, harmony becomes spectrum.
The amplitudes of these components are
varied so that they have a kind of “shimmer”
moving up and down the spectrum. There
are five different ways in which the sounds
are introduced into the piece: the basic
cluster, a “variegated” cluster, a “whoosh”
sound that attacks each of the components
separately, a “gong” sound, and a cluster
glissando. The piece begins in the middle
range and proceeds through several short
passages, each emphasizing a different
aspect of the sounds, until it reaches a big
climax with all instruments being used, and
finally concludes quietly, much as it began.

These explore but a minimum of what is
possible with these diverse and interesting
sounds.

5



2020, Ne 4 %, CoBpeMeHHBIN KOMIIOSUTOP

About the author:

Hubert S. Howe, Jr., Ph.D. (Composition), Princeton University
(New Jersey, United States of America);

Professor at the Queens College, City University of New York
(11367-1597, New York City, United States of America),

ORCID: 0000-0001-5822-8364, hubert.howe@qc.cuny.edu

06 asmope:

Xbro6epr C. Xay, ML, Ph.D. (komnosunys), [IpUHCTOHCKUY YHUBEPCUTET
(Hero-/I>xepcu, CoemmHéHHBIe [IITaThl AMEPUKHN);

npodeccop KBunc Kostemka (mogpaszaeaerus ['opojckoro yHusepcurera Hero-Hopka)
(11367-1597, 1. Hb}o-FIopK, CoemuHéHHEIe [IITaThl AMEPUKH),

ORCID: 0000-0001-5822-8364, hubert.howe@qc.cuny.edu

S

99





